q-ANALOGUES OF THE SUMS OF POWERS OF CONSECUTIVE INTEGERS

نویسنده

  • Taekyun Kim
چکیده

Let n, k be the positive integers (k > 1), and let Sn,q(k) be the sums of the n-th powers of positive q-integers up to k − 1: Sn,q(k) = ∑k−1 l=0 ql. Following an idea due to J. Bernoulli, we explore a formula for Sn,q(k).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOTE ON THE SUMS OF POWERS OF CONSECUTIVE q-INTEGERS

In this paper we construct the q-analogue of Barnes's Bernoulli numbers and polynomials of degree 2, for positive even integers, which is an answer to a part of Schlosser's question. For positive odd integers, Schlosser's question is still open. Finally, we will treat the q-analogue of the sums of powers of consecutive integers.

متن کامل

On the alternating sums of powers of consecutive q-integers

In this paper we construct q-Genocchi numbers and polynomials. By using these numbers and polynomials, we investigate the q-analogue of alternating sums of powers of consecutive integers due to Euler. 2000 Mathematics Subject Classification : 11S80, 11B68

متن کامل

q-Analogues of the Sums of Consecutive Integers, Squares, Cubes, Quarts and Quints

We first show how a special case of Jackson’s 8φ7 summation immediately gives Warnaar’s q-analogue of the sum of the first n cubes, as well as q-analogues of the sums of the first n integers and first n squares. Similarly, by appropriately specializing Bailey’s terminating very-well-poised balanced 10φ9 transformation and applying the terminating very-well-poised 6φ5 summation, we find q-analog...

متن کامل

A Note on the Alternating Sums of Powers of Consecutive Integers

For n, k ∈ Z≥0, let Tn(k) be the alternating sums of the n-th powers of positive integers up to k − 1: Tn(k) = ∑ k−1 l=0 (−1)l. Following an idea due to Euler, we give the below formula for Tn(k): Tn(k) = (−1) 2 n−1 ∑ l=0 (n l ) Elk n−l + En 2 (

متن کامل

On a Congruence Modulo n Involving Two Consecutive Sums of Powers

For various positive integers k, the sums of kth powers of the first n positive integers, Sk(n) := 1 k+2k+ · · ·+nk, are some of the most popular sums in all of mathematics. In this note we prove a congruence modulo n3 involving two consecutive sums S2k(n) and S2k+1(n). This congruence allows us to establish an equivalent formulation of Giuga’s conjecture. Moreover, if k is even and n ≥ 5 is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005